
611-TD-572-001

EOSDIS Core System Project

M&O Procedures:
Section 5 — Security Services

Interim Update

April 2000

Raytheon Systems Company
Upper Marlboro, Maryland

Preface

This document is an interim update to the Mission Operations Procedures Manual for the ECS

Project, document number 611-CD-500-001. This document has not been submitted to NASA

for approval, and should be considered unofficial.

This is a complete update which addresses clerical as well as technical issues related to Release

5B such as the Secure Shell 2.0 update. Other issues will be addressed in the Release 6A update

such as the issues raised by the new ESDIS Security Plan impacts on the release 5B ECS.

Any questions should be addressed to Byron Peters or Rodney Creecy:

Data Management Office

The ECS Project Office

Raytheon Systems Company

1616 McCormick Drive

Upper Marlboro, Maryland 20774-5301

Interim Update iii 611-TD-572-001

This page intentionally left blank.

Interim Update iv 611-TD-572-001

5. Security Services

ECS security architecture must meet the requirements for data integrity, availability, and
confidentiality. ECS Security Services meets these requirements by incorporating a variety of
mechanisms to establish and verify user accounts, issue and verify passwords, audit user activity,
and verify and protect data transfer. Security logs will be monitored and security reports
generated by the System Administrator as required. Several FREEWARE OPEN SOURCE
products provide tools for authentication and network and system monitoring: SATAN, Crack,
anlpasswd, TCP Wrappers, and Tripwire. The commercially supported version of F-Secure
Secure Shell which provides authentication and encryption connection services is being
implemented. The Open Software Foundation's Distributed Computing Environment (OSF/DCE)
employs Kerberos for authenticating user requests for network services. (DCE administration
tools a are discussed in Section 3 of this document.) The OPEN SOURCE product, SATAN, is
used to scan networks to find system security vulnerabilities. Three OPEN SOURCE products
— Crack and anlpasswd provide brute force password cracking and password checking
respectively for local system and network access. ECS Security Services use TCP Wrappers to
monitor and limit access to network services,. Tripwire monitors for intruders by noting changes
to files. F-Secure Secure Shell provides strong authentication access and session encryption for
ECS from external, non-trusted networks as well as internally within a DAAC or M&O to
DAAC. Security Services also supports detection of, reporting, and recovery from security
breaches.

The following section defines step-by-step procedures for M&O personnel to run the Security
Services tools. The procedures assume that the requester's application for a Security process has
already been approved by DAAC Management. It is recommended that access to these tools be
controlled through the root access only.

5.1 Scanning Network Vulnerabilities

The Security Administrator Tool for Analyzing Networks (SATAN) is a testing and reporting
tool that collects a variety of information about networked hosts. SATAN gathers information
about specified hosts and networks by examining network services (for example, finger, NFS,
NIS, ftp). SATAN also gathers general network information (network topology, network
services run, types of hardware and software being used on the network). The data is used to
point out system vulnerabilities. Data can be reported in a summary format. Problems are
described briefly and pointers provided to patches or workarounds.

Periodically, the System Administrator will run SATAN as root. The procedures are provided
below. SATAN need not be installed on a permanent basis on a host.

1 Make sure that DISPLAY is set on your workstation.

2 From /usr/local/solaris/satan-1.1.1 type ./satan.

Interim Update 5-1 611-TD-572-001

3	 From the SATAN Control Panel, select SATAN Configuration Management. Set all
variables or use the default values.

4 Go back to the SATAN Control Panel.

5	 From the SATAN Control Panel, select SATAN Data Management. Create the
SATAN database if it does not exist. When you create the database for the first time, you
will see a warning message concerning password disclosures. Take no action and
continue. The database is stored as satan-data in the directory

/satan-1.1.1/results.

6	 You will be notified when the SATAN finishes creating the database and scans the
system (network or cluster) for vulnerabilities.

7	 From this screen, you can click on "Continue with Reporting and Analysis" or you can
return to the SATAN Control Panel, to make this selection. Select the reports that you
want to review.

5.2 Ensuring Password Integrity

One aspect of system security is discretionary access control based on user passwords.
Passwords should be so unique that they are virtually impenetrable to unauthorized users. Two
products provide utilities to create effective password practices. "Crack" detects weak passwords
that could be easily bypassed. It works in "batch" mode. Anlpassword enforces strong password
rules as the user is changing their password.

Crack and anlpasswd provide comprehensive dictionary, which can be shared. These "source"
dictionaries provide lists of words, which if used, would create vulnerable passwords. You can
add other dictionaries, for example, acronym lists, to eliminate commonly used terms from being
used as passwords.

Both products are installed in a secure location, that has, root access only. Such precautions are
particularly apt when running Crack, which gives the administrator access to everyone's
password that he/she penetrates.

5.2.1 Detecting Weak Passwords

Running Crack against a system’s password file will enable a system administrator to assess how
vulnerable the file is to unauthorized users and how well authorized users select secure
passwords. Crack is designed to find standard Unix eight-character DES-encrypted passwords
by standard guessing techniques.

Crack takes as its input a series of password files and source dictionaries. It merges the
dictionaries, turns the password files into a sorted list, and generates lists of possible passwords
from the merged dictionary or from information gleaned about users from the password file. It
does not attempt to remedy the problem of allowing users to have guessable passwords, and it
should NOT be used in place of getting a really good, secure password program replacement.

Interim Update 5-2 611-TD-572-001

The instructions provided in the following sections are general in nature because how you
configure Crack is DAAC specific. M&O personnel should be familiar with these tasks to:

1. Configure the Crack shellscript and config.h files based on the README file and on
requirements established for your site. See the Section on “Configuring Crack” below.

2. Run Crack based on requirements established for your site. See “Running Crack”, below.

3. Customize the dictionaries. See Section “Creating Dictionaries”, below.

5.2.1.1 Configuring Crack

Although Crack should already be configured for your system, the instructions are provided
should you have to reconstruct the makefile as a result of file corruption. Crack has two
configuration files: the Crack shellscript, which contains all the installation-specific
configuration data, and the file Sources/conf.h, which contains configuration options specific to
various binary platforms.

1	 In the Crack shellscript, edit the CRACK_HOME variable to the correct value. This
variable should be set to an absolute path name through which the directory containing
Crack may be accessed on ALL machines on which Crack will be run. (Path names
relative to username are acceptable as long as you have some sort of csh.)

There is a similar variable, CRACK_OUT, which specifies where Crack should put its
output files — by default, this is the same as $CRACK_HOME.

2	 Edit the file Sources/conf.h and establish which switches to enable. Each #define has a
small note explaining its purpose. Portability of certain library functions, should not be a
problem.

3	 If using Crack-network (see Section Options, below), generate a Scripts/ network.conf
file. This file contains:

• a list of hostnames to rsh/ssh to

•	 their binary type (useful when running a network Crack on several different
architectures)

•	 an estimate of their relative power (take your slowest machine as unary, and measure
all others relative to it)

•	 a list of per-host flags to add to those specified on the Crack command line, when
calling that host.

There is an example of such a file provided in the Scripts directory.

4	 To specify a more precise figure as to the relative power of your machines, play with the
command make tests in the source code directory. This can provide you with the number
of fcrypt()s that your machine can do per second, which is a number that you can plug

Interim Update 5-3 611-TD-572-001

into your network.conf as a measure of your machines' power (after rounding the value
to an integer).

5.2.1.2 Running Crack

Crack is a self-installing program. Once the necessary configuration options for the Crack
shellscript and config.h have been set, the executables are created via make by running the
Crack shellscript.

Notes for Yellow Pages (NIS) Users:

To get Crack running from a YP password file, the simplest way is to generate a passwd
format file by running:

ypcat passwd > passwd.yp

and then running Crack on this file.

To launch Crack:

1 Change directory:

cd /usr/local/solaris /crack

2 To execute the program, type:

./Crack

2 For the single platform version:

./Crack [options] [bindir] /etc/passwd [...other passwd files]

3 To execute over the network, type:

./Crack -network [options] /etc/passwd [...other passwd files]

For a brief overview of the [options] available, see Section “Options”, below. Section ”Crack
Support Scripts” briefly describes several very useful scripts.

5.2.1.3 Creating Dictionaries

Crack works by performing several individual passes over the password entries that are supplied.
Each pass generates password guesses based upon a sequence of rules, supplied to the program
by the user. The rules are specified in a simplistic language in the files gecos.rules and
dicts.rules, located in the Scripts directory (see Section “Crack Support Scripts”, below).

Rules in Scripts/gecos.rules are applied to data generated by Crack from the pw_gecos and
pw_gecos entries of the user's password entry. The entire set of rules in gecos.rules is applied to
each of these words, which creates many more permutations and combinations, all of which are
tested. After a pass has been made over the data based on gecos information, Crack makes
further passes over the password data using successive rules from the Scripts/dicts.rules by
loading the whole of Dicts/bigdict file into memory, with the rule being applied to each word

Interim Update 5-4 611-TD-572-001

from that file. This generates a resident dictionary, which is sorted and made unique so as to
prevent wasting time on repetition. After each pass is completed, the memory used by the
resident dictionary is freed up, and re-used when the next dictionary is loaded.

Crack creates the Dicts/bigdict dictionary by merging, sorting, and making unique the source
dictionaries, which are to be found in the directory DictSrc and which may also be named in the
Crack shellscript, via the $STDDICT variable. (The default value of $STDDICT is
/usr/dict/words.)

The file DictSrc/bad_pws.dat is a dictionary which is meant to provide many of those common
but non-dictionary passwords, such as 12345678 or qwerty.

To create your own dictionary:

1	 Copy your dictionary into the DictSrc directory (use compress on it if you wish to save
space; Crack will unpack it while generating the big dictionary).

2	 Delete the contents of the Dicts directory by running Scripts/spotless. Your new
dictionary will be merged in on the next run.

5.2.1.4 Options

-f	 Runs Crack in foreground mode, i.e., the password cracker is not put into the
background, and messages appear on stdout and stderr as you would expect. This
option is only really useful for very small password files, or when you want to put a
wrapper script around Crack.

Foreground mode is disabled if you try running Crack-network -f on the command
line, because of the insensibility of rsh'ing to several machines in turn, waiting for
each one to finish before calling the next. For more information, read the section
about Network Cracking without NFS/RFS in the README.NETWORK file.

Sets verbose mode, whereby Crack will print every guess it is trying on a per-user
basis. This is a very quick way of flooding your filestore, but useful if you think
something is going wrong.

-m	 Sends mail to any user whose password you crack by invoking Scripts/nastygram
with their username as an argument. The reason for using the script is so that a
degree of flexibility in the format of the mail message is supplied; i.e., you don't
have to recompile code in order to change the message.

-nvalue	 Sets the process to be nice()ed to value, so, for example, the switch -n19 sets the
Crack process to run at the lowest priority.

-network	 Throws Crack into network mode, in which it reads the Scripts/network.conf file,
splits its input into chunks which are sized according to the power of the target
machine, and calls rsh to run Crack on that machine. Options for Crack running on
the target machine may be supplied on the command line (for example, verbose or

Interim Update 5-5 611-TD-572-001

-v

recover mode), or in the network.conf file if they pertain to specific hosts (e.g.,
nice() values).

-r<pointfile>
This is only for use when running in recover mode. When a running Crack instance
starts pass 2, it periodically saves its state in a point file, with a name of the form
Runtime/P.* This file can be used to recover where you were should a host crash.
Simply invoke Crack in exactly the same manner as the last time, with the addition of
the -r switch (for example, -rRuntime/Pfred12345). Crack will startup and read the
file, and jump to roughly where it left off. If you are cracking a very large password
file, this can save a lot of time after a crash.

5.2.1.5 Crack Support Scripts

The Scripts directory contains a small number of support and utility scripts, some of which are
designed to help Crack users check their progress. The most useful scripts are briefly described
below.
Scripts/shadmrg

This is a small script for merging /etc/passwd and /etc/shadow on System V style
shadow password systems. It produces the merged data to stdout, and will need to be
redirected into a file before Crack can work on it.

Scripts/plaster
This is a simple frontend to the Runtime/D* diefiles that each copy of the password
cracker generates. Invoking Scripts/plaster will kill off all copies of the password cracker
you are running, over the network or otherwise. Diefiles contain debugging information
about the job, and are generated so that all the jobs on the entire network can be called
quickly by invoking Scripts/plaster. Diefiles delete themselves after they have been run.

Scripts/status
This script rsh's to each machine mentioned in the Scripts/network.conf file, and provides
some information about processes and uptime on that machine. This is useful when you
want to find out just how well your password crackers are getting on during a Crack
network.

Scripts/{clean,spotless}
These are really just front ends to a makefile. Invoking Scripts/clean tidies up the Crack
home directory, and removes probably unwanted files, but leaves the pre-processed
dictionary bigdict intact. Scripts/spotless does the same as Scripts/clean but obliterates
bigdict and old output files, too, and compresses the feedback files into one.

Scripts/nastygram
This is the shellscript that is invoked by the password cracker to send mail to users who
have guessable passwords, if the -m option is used. Edit it to suit your system.

Scripts/guess2fbk
This script takes your out* files as arguments and reformats the 'Guessed' lines into a
slightly messy feedback file, suitable for storing with the others.
An occasion where this might be useful is when your cracker has guessed many peoples'
passwords, and then died for some reason (a crash?) before writing out the guesses to a
feedback file. Running Scripts/guess2fbk out* >> Runtime/F.new will save the work that
has been done.

5.2.1.6 Checking the Log

Crack loads dictionaries directly into memory, sorts and makes them unique, before attempting
to use each of the words as a guess for each users' password. If Crack correctly guesses a

Interim Update 5-6 611-TD-572-001

password, it marks the user as done and does not waste further time on trying to break that user's
password.

Once Crack has finished a dictionary pass, it sweeps the list of users looking for the passwords it
has cracked. It stores the cracked passwords in both plain text and encrypted forms in a feedback
file in the directory Runtime. Feedback files have names of the form Runtime/F*. The purpose
of this is so that when it is next invoked, Crack can recognize passwords that it has successfully
cracked previously, and filter them from the input to the password cracker. This provides an
instant list of crackable users who have not changed their passwords since the last time Crack
was run. This list appears in a file with name out* in the $CRACK_OUT directory, or on
stdout, if foreground mode (-f) is invoked (see Section “Options”, above).

Similarly, when a Crack run terminates normally, it writes out to the feedback file all encrypted
passwords that it has NOT succeeded in cracking. Crack will then ignore all of these passwords
next time you run it.

Obviously, this is not desirable if you frequently change your dictionaries or rules, and so there is
a script provided, Scripts/mrgfbk. This script sorts your feedback files, merges them into one,
and optionally removes all traces of "uncrackable" passwords, so that your next Crack run can
have a go at passwords it has not succeeded in breaking before.

mrgfbk is invoked automatically if you run Scripts/spotless (see Section “Crack Support
Scripts”, above).

5.2.2 Configuring AnlPasswd
anlpasswd was written by Argonne National Laboratory. There is no install script and

installation is by hand. anlpasswd consists of a setuid C program that is used to call the

anlpasswd Perl script. The Perl script uses several standard include files that come with Perl and

other files that are included with anlpasswd. Additionally, a dictionary file is used to match

attempted passwords against possible bad passwords that are in the dictionary file.

It is assumed that Perl 5.003 is properly installed in /tools/bin/perl5 for each platform that

anlpasswd is to be used on. The binary ypstuff most likely be placed in a NFS shared directory

(/tools/bin). The actual Perl program that does the work should be placed in /usr/local/anlpasswd

and chmod to 600. This can't be placed in a NFS directory since /tools/bin/ usually isn't "root

equivalent" on all machines and this script should be set to root read only. The Perl includes and

dictionary file should also be NFS mounted and placed in /tools/lib/anlpasswd.

The remainder of the installation will need to be completed on each individual machine (moving

passwd and yppasswd, creating a SUID program, creating the links, etc.)

The following should be done on each machine (as root):

This assumes that the /tools/bin and /tools/lib directories are already setup as directed above.

Execute the following commands on each host from root:

cd /usr/bin
mv passwd passwd.orig
chmod 644 passwd.orig
mv yppasswd yppasswd.orig
chmod 644 yppasswd.orig
cd /usr/local
mkdir anlpasswd
cd anlpasswd
cp {source install directory}/anlpasswd .

Interim Update 5-7 611-TD-572-001

chmod 600 anlpasswd

ln -s anlpasswd passwd

ln -s anlpasswd yppasswd

cd /usr/bin

cp {source install directory}/bin.{ARCH}/suidwrap passwd

chmod 4111 passwd

ln -s passwd yppasswd

Below are the original installation instructions as provided by ANL.

5.2.2.1 Installing anlpasswd
1. Copy and modify the anlpasswd Perl script. This is located in the "anlpasswd/perl" directory
of the distribution, and is called (logically enough) "anlpasswd". The configuration section of
the code is located near the beginning of the script, and is labeled "Configs". Here are the lines
you need to be concerned with changing:

@legal_shells = ('/bin/sh, /bin/csh');

This is an array containing the valid shells available on your system. Note that this may not

necessarily be the same as the information listed in /etc/shells. For example, on some machines,

/bin/csh and /bin/sh don't have to be listed in /etc/shells. This is not the case with anlpasswd; you

should set @legal_shells to contain a list of all valid login shells. If you add new login shells to

your systems, you need to update this array.

It is very important that the shells listed here are available on all of the machines on your YP

network; otherwise, a user may change his/her shell to one that doesn't exist on one of your

machines, and therefore will be unable to log in to that machine.

unshift(@INC, "/tools/lib/anlpasswd");
These are additional locations for Perl to look for the include files that came with the anlpasswd
distribution. These are currently set for our local configuration. If you decide to put the Perl
libraries in this distribution (im_prompt2.pl, encrypt_passwd) in locations other than the main
Perl include directory, you should add those locations to the include file search path (@INC) as
shown above.
Otherwise, you can just delete these lines.

$bigdict = large list of words
$dictdir = "/tools/lib/anlpasswd"; # location of dictionaries
$bigdict = "$dictdir/bigdict"; # large list of words
$ypstuffdir = "/tools/bin"; # location of ypstuff executable
$BADPATS = "$dictdir/badpats"; # location of added bad patterns

These are the locations of other files that anlpasswd needs. Change these to reflect the location
of your dictionaries, the location of the main dictionary (bigdict.sorted, in this case), and the
location of the "ypstuff" program. Again, if you're using this package over a networked system,
the dictionaries must be located on some filesystem cross-mounted on all of your machines;
otherwise this won't work.
There is a badpats file in the perl directory to use as an example.
Again, the location of the file is installation specific, but it is recommended to put it in with the
big dictionary.
Finally, edit the definition of the @dictlist array to contain the names of the additional
dictionaries (if any) you want to use.

2. Decide where you want to put the anlpasswd script, and copy it there. If you are installing this
on a network of machines, this location must be on a filesystem cross-mounted on all machines.

Interim Update 5-8 611-TD-572-001

Since Perl disallows running setuid Perl scripts, the anlpasswd script is not executed directly.
Instead, a setuid C wrapper is used to call the anlpasswd script. The Perl script should not be
executable or setuid, and should not be located in anyone's path. You should probably

chmod 600 anlpasswd"
to be safe.
3. Make a link to anlpasswd called "passwd", i.e.

ln -s anlpasswd passwd
If you are using YP, make another link for yppasswd:

ln -s anlpasswd yppasswd.
4. Decide where you want the passwd executable to reside. This is a C wrapper running setuid to
root which calls the anlpasswd script. This will probably be in /bin or /usr/local/bin.
You should keep a copy of the original passwd program around somewhere, in case something
breaks, but it should not be executable. A good idea would be to do the following:

cd /usr/bin (or wherever the original passwd program was kept)
mv passwd passwd.orig
chmod 644 passwd.orig

5. Modify anlpasswd/c-routines/suidwrap.c to suit your local configuration. The
PASSWD_ACTUAL constant contains the location of the "passwd" link to anlpasswd. Similarly
the YPPASSWD_ACTUAL constant contains the location of the "yppasswd" link. You should
change these to reflect the locations you chose in steps 2 and 3. The current settings assume the
yppasswd and passwd executables can be located in /bin or /usr/local/bin. You should modify
these to reflect the location(s) you chose in step 4.
6. Run "make" in anlpasswd.ARCH/c-routines. This will compile the suid wrapper and the
ypstuff executable. In the SGI directory, manually run the lines in the makefile that are
commented out.
7. Copy "suidwrap" to the location you chose in step 4, and rename this copy as "passwd". (Be

sure you saved your original passwd program in a safe place). Change this to be executable by
all users, and set it to run suid to root (you must be logged in as root to do this). Make a link to
this file called "yppasswd".

For example,
cp suidwrap passwd_exec_dir/passwd
cd passwd_exec_dir
chmod 4111 passwd
ln -s passwd yppasswd

Unless the location you have chosen for the passwd executable is on a partition cross-mounted
on all machines, you will have to repeat this procedure on every machine (or architecture) on
your network. (Don't confuse the executable C wrapper with the Perl anlpasswd script; there
should only be one copy of the Perl script, on a partition accessible by all the machines on your
network.)
7. Copy anlpasswd.ARCH/c-routines/ypstuff to the location you chose for it in step 1.

8. Put the large dictionary file in the location you chose in step 1. There is a C program and

instructions to do this in dictionary-create.

That should be all that is needed to get this program up and running. If there are any problems or

inaccuracies in this documentation, or have any improvements or bug fixes, please send email to

"support@mcs.anl.gov"

Interim Update 5-9 611-TD-572-001

5.3 Secure access
The security risks involved in using “R” commands such as rlogin, rsh, rexec and rcp are well

known but their ease of use has made their use tempting in all but the most secure of

environments. Ssh is an easy-to-use, drop in replacement for these commands developed by Tatu

Ylonen. Ssh is a “user” level application. No changes to the host kernel are required. The UNIX

server implements the commercial version of F-Secure. Both the SSH version 1 and SSH

Version 2 version are included in pre-compiled, OS-specific packages

As of the ECS Secure Shell 2.0 release in May, 2000, all of the files needed to function are

loaded locally on each UNIX host in /usr/local/bin.

• ssh - replaces rsh, rlogin and rexec for interactive sessions
• scp - replaces rcp for interactive file transfer
• ssh-add - add access to a specific ssh host
• ssh-keygen - generates keys for the local host based on a passphrase (long password)
• sftp - secure ftp

The host daemons are in /usr/local/sbin which include:
• sshd1 - the ssh version 1daemon
• sshd2 - the ssh version 2 daemon

Several files are generated on installation and when running and are installed locally:
• /etc/ssh_config - system-wide configuration for the ssh client
• /etc/ssh_host_key - contains the long number used for one of the keys
• /etc/ssh_host_key.pub - contains the key known to the public
• /etc/ssh_random_seed - base number used in generating keys
• /etc/sshd.pid - the process number of the sshd currently running
• /etc/sshd_config - defines the local security policy
• /etc/ssh2/ssh2_config - system-wide configuration for the ssh2 client
• /etc/ssh2/hostkey - contains the long number used for one of the ssh2 keys
• /etc/ssh2/hostkey.pub - contains the ssh2 key known to the public
• /etc/ssh2/random_seed - base number used in generating keys
• /etc/ssh2/sshd2_config - defines the local ssh2 security policy
• /etc/sshd2_22.pid (Solaris/SGI) - the process id of the ssh2 daemon currently running
• /var/run/sshd2_22 (HP) - the process id of the ssh2 daemon currently running

The amount of disk space that the programs and the configurations require is less than 25 MB.

5.3.1 The SSH Encryption Mechanism1

Each host has a host-specific RSA key (normally 1024 bits) used to identify the host.
Additionally, when the daemon starts, it generates a server RSA key (normally 768 bits). This
key is normally regenerated every hour if it has been used, and is never stored on disk.
Whenever a client connects the daemon, the daemon sends its host and server public keys to the
client. The client compares the host key against its own database to verify that it has not
changed. The client then generates a 256 bit random number. It encrypts this random number
using both the host key and the server key, and sends the encrypted number to the server. Both
sides then start to use this random number as a session key which is used to encrypt all further
communications in the session. The rest of the session is encrypted using a conventional cipher.

1 From the sshd man page

Interim Update 5-10 611-TD-572-001

Currently, IDEA, DES, 3DES, and ARCFOUR are supported. Within ECS, 3DES is used by

default. The client selects the encryption algorithm to use from those offered by the server.

Next, the server and the client enter an authentication dialog. The client tries to authenticate itself

using .rhosts authentication, .rhosts authentication combined with RSA host authentication, RSA

challenge-response authentication, or password based authentication.

Rhosts authentication is disabled within the DAACS because it is fundamentally.

If the client successfully authenticates itself, a dialog for preparing the session is entered. At this

time the client may request things like allocating a pseudo-tty, forwarding X11 connections,

forwarding TCP/IP connections, or forwarding the authentication agent connection over the

secure channel.

5.3.2 How a User uses Secure Shell

The simplest way

To login, use the command:
% slogin defiant
Enter the passphrase for the key (lotsofstuffhere): br0wn cow 3ats grass
Last login: Sun Feb 22 06:50:59 1998 from echuser.east.hitc.com
No mail.
%

NOTE: The first time you login to a host the following message will pop up asking if you want
to continue. In response, type yes and [enter]:

Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)? yes
Host 't1acg01' added to the list of known hosts.

To transfer a file, use the command:
% scp hostone:/etc/info info
Enter the passphrase for the key (lotsofstuffhere):: br0wn cow 3ats grass

This will copy the file /etc/info from hostone to your local host. Note that your passphrase is

needed to initiate the transfer.

IMPORTANT NOTE: The default directory on the *target* host is always the users HOME

directory.

Also, one may send/receive file recursively using "-r" such as:

% scp -r ~/files/* hostone:~/files
will send what is in the home directory files subdirectory to the target host hostone in the home
files directory.
To execute a command remotely, use the command:

% ssh whoisonfirst ps -ef

Enter the passphrase for the key (lotsofstuffhere):: br0wn cow 3ats grass

A laye r o f convenience

If you are already a user of "r" commands, you probably know about the .rhost file. Ssh will

allow a user to setup the .rhost equivalent called .shost in one's home directory. .Rhost and .shost

contain the names of the hosts to which one normally connects. The nice thing about using it is

one need not enter one's passphrase. Unlike "r" commands, however, ssh commands use long

strings of numbers to authenticate the client, which makes it quite difficult for an intruder to

impersonate a legitimate user. One word of caution, however. If you leave your terminal while

logged on, a passerby could logon to any host in your .rhost/.shosts file and potentially cause

malicious damage to you and your colleagues work. Be aware!

NOTE: ssh checks the mode of .shost, so change permission on .shost by typing:

% chmod 600 /home/JohnDoe/.shost
where you must substitute your own home directory for /home/JohnDoe.

Interim Update 5-11 611-TD-572-001

Multiple conn ections

If you open multiple connections, it is more convenient to keep your keys in system memory. To
do this requires executing two commands:

% ssa
Enter the passphrase for the key (lotsofstuffhere):
Enter passphrase: br0wn cow 3ats grass
Identity added: /home/JohnDoe/.ssh/identity (bpeters@nevermor)
%

Now, one may make connections (slogin, scp, ssh) to hosts that are running ssh without being
prompted for a passphrase.

Se cure FTP

As of this release, a secure version of ftp is included. Use the command:

% sftp user@remotehost

Enter the passphrase for the key (lotsofstuffhere): MY PASSPHRASE <enter>

local directory - /home/user

remote directory - /home/user

sftp> get thisisafilename

sftp> quit

Other notes

IMPORTANT: Ssh will automatically "tunnel" X sessions without user involvement even
through multiple hops. However, it is important to NOT change the DISPLAY parameter or X
will not use the ssh tunnel!
5.3.3 Configuration of Secure Shell

Local setup

Most users will start from the same host whether from an X terminal, a UNIX workstation, or a
PC. Running the sshsetup script generates long strings called keys that make ssh work. One set
of keys is needed for each home directory.

The only thing you need to know before executing the script is to pick a good passphrase of at
least 10 characters. You can and should use spaces and multiple words with numbers,
misspellings and special characters. Note that passwords are NOT echoed back to the screen.

PLEASE DO NOT USE THE PASSWORDS/PASSPHRASES USED HERE OR IN ANY
OTHER DOCUMENTATION!

Using the script sshsetup should look like:
% sshsetup <enter>
Use a passphrase of at least 10 characters which should include numbers
or special characters and MAY include spaces

New passphrase: This is a silly test <enter>
Retype new passphrase: This is a silly test <enter>

Interim Update 5-12 611-TD-572-001

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6

Generating ssh1 keys. Please wait while the program completes...

Generating ssh2 keys. This can take up to 240 seconds...

Done with sshsetup!

%

You are on the way!

NOTE: If you have accounts in the PVC, VATC and/or the EDF, do sshsetup in EACH

environment.

Remote Setup

If you need to access a host with a different home directory, you will need to run the sshremote
script. This script sets up the destination host with the new set of keys and transfers the source
(local) key to the destination and the destination key to the source. A new capability is to use
different user names on the source and target hosts. This should look something like:

% sshremote

Remote user name (default: yourusername):

Do you want to setup for:

VATC

PVC

GSFC DAAC

SMC

GSFC M and O

EDC DAAC

EDC M and O

LaRC DAAC

LaRC M and O

NSIDC DAAC

NSIDC M and O

x Exit from script
Select:
2
Working...
Accepting host p0spg07.pvc.ecs.nasa.gov key without checking.
yourusername@p0spg07.pvc.ecs.nasa.gov's password:
Authentication complete. Continuing with sshremote...
Downloaded remote keys.
Uploaded local keys.
Keys concatenated.

Enter next site (press the enter-key and then x enter-key to exit)

Remote user name (default: yourusername): <enter>

Do you want to setup for:
VATC
PVC
GSFC DAAC
SMC
GSFC M and O
EDC DAAC

Interim Update 5-13 611-TD-572-001

7 EDC M and O

8 LaRC DAAC

9 LaRC M and O

10 NSIDC DAAC

11 NSIDC M and O

x Exit from script

Select:

x <enter>

bye!

%

Changing your Passphra se

To change your passphrase, use the following command:
% ssh-keygen -p
Enter file in which the key is ($HOME/.ssh/identity): [RETURN]
Enter old passphrase: litt1e 1amp jumb3d
Key has comment 'JohnDoe@theagency.nasa.gov'
Enter new passphrase (empty for no passphrase): br0wn cow 3ats grass
Enter same passphrase again: br0wn cow 3ats grass
Your identification has been saved with the new passphrase.

5.3.4 Administration of Secure Shell

There is no administration of secure shell required except for general monitoring to make sure
that the daemon processes (/usr/local/sbin/sshd1 and /usr/local/sbin/sshd2) are running. Note,
however, that the standard installation will establish a /var/log/ssh log file. It is recommended to
review the /var/log/ssh and the system log file at least once a week.

5.4 Controlling Requests for Network Services (TCP Wrappers)

With TCP Wrappers, you can monitor and filter incoming requests for network services, such as
FTP.

TCP Wrapper provides a small wrapper program for inet daemons that can be installed without
any changes to existing software or to existing configuration files. The wrappers report the name
of the client host and the name of the requested service; the wrappers do not exchange
information with the client or server applications, and impose no overhead on the actual
conversation between the client and server applications. The usual approach is to run one single
daemon process that waits for all kinds of incoming network connections. Whenever a
connection is established, this daemon runs the appropriate server program and goes back to
sleep, waiting for other connections.

M&O personnel will monitor requests for these network services:

Client Server Application

ftp ftpd file transfer
finger fingerd show users

Interim Update 5-14 611-TD-572-001

The /var/log/wrappers log file should be reviewed at least once a week. The log file provides
information concerning who tried to access the network service. TCP Wrapper blocks any
request made by unauthorized users. TCP Wrapper can be configured to send a message to any
administrator whose request is rejected.

5.5 INSTALLATION, CONFIGURATION, and TESTING for Wrappers

The installation of TCP Wrappers is part of the ECS Secure Shell 2.0 package. The location of
most of the wrappers files have been changed to /usr/local/sbin. Libwrap.a is in /usr/local/lib and
tcpd.h is in /usr/local/include.

1. There are two files that provide access control for the system: /etc/hosts.allow and
/etc/hosts.deny

The general format is:

daemonlist : clientlist : script : ALLOW/DENY

What follows is an example of a /etc/hosts.allow file as used at the Landover facility:

================

Added for HIPPI network. Do Not Delete!

ALL: 192.168.1. : BANNERS /usr/local/sbin/banners : ALLOW

ALL: 198.118. : BANNERS /usr/local/sbin/banners : ALLOW

ALL: 198.118.192. : BANNERS /usr/local/sbin/banners : DENY

ALL: 192.150.28. : BANNERS /usr/local/sbin/banners : ALLOW

ALL: 38.177.222. : BANNERS /usr/local/sbin/banners : ALLOW

ALL: 128.183. : BANNERS /usr/local/sbin/banners : ALLOW

ALL: ALL: BANNERS /usr/local/sbin/banners : DENY

2. The following lines should be included in a Solaris /etc/inetd.conf :

ftp stream tcp nowait root /usr/local/sbin/tcpd in.ftpd

telnet stream tcp nowait root /usr/local/sbin/tcpd in.telnetd

The default daemons should be commented out:

#ftp stream tcp nowait root /usr/sbin/in.ftpd in.ftpd

Interim Update 5-15 611-TD-572-001

#telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

3. Determins the process numbe of the inet daemon and restart it using the command:

ps -ef | grep inetd

kill -HUP "inetd process number"

4. Test to make sure that you can login from the existing host and also from another host on a
different subnet.

5. Finish up using the following commands:

chmod 750 /etc/hosts.allow

touch /var/log/wrappers

chmod 751 /var/log/wrappers

6. . You are done.

5.6 Monitoring File and Directory Integrity (Tripwire)

Tripwire is a tool that aids in the detection of unauthorized modification of files resident on Unix
systems. Tripwire is automatically invoked at system startup. This utility checks file and
directory integrity by comparing a designated set of files and directories against information
stored in a previously generated database. Tripwire flags and logs any differences, including
added or deleted entries. When run against system files regularly, Tripwire spots any changes in
critical system files, records these changes into its database, and notifies system administrators of
corrupted or tampered files so that they can take damage control measures quickly and
effectively. With Tripwire, system administrators can conclude with a high degree of certainty
that a given set of files remain free of unauthorized modifications if Tripwire reports no changes.

Note:	 Since system files should not change and users' files change
constantly, Tripwire should be used to monitor only system files.
The list of system files you want to monitor is stored in
./configs/tw.conf.

Tripwire is configured to mail the system administrator any output that it generates. However,
some files on your system may change during normal operation, and this necessitates updating
the Tripwire database.

5.6.1 Installation of Tripwire

1. Login or su to root

2.	 Change directory to the admin automount:

cd /tools/admin

Interim Update 5-16 611-TD-572-001

3.	 Make a tripwire directory using the command:

mkdir tripwire

4.	 Make sun5, irix62, irix65 and hpux10 directories:

mkdir sun5

mkdir irix62

mkdir irix65

mkdir hpux10

5. Download the distributions from the SMC to their respective directory and uncompress

6. Copy inetd file using the command:

cp /etc/inet/inetd.conf /etc/inet/inetd.conf.orig

7. To setup:

/etc/tripwire-1.2/src/tripwire -init

This will create a database file resided in

/etc/tripwire-1.2/src/databases/tw.db_HOSTNAME

8. To test, from a normal user account, execute the command:

: % touch /etc/intruder

9. From root, then get the report using the command:

/etc/tripwire-1.2/src/tripwire -v > /tmp/tw.report

This should report /etc/intruder was created.

10. Delete the test file and the sample reports using the commands:

rm /etc/intruder

rm /tmp/tw.report

5.6.2 Updating the Tripwire Database

You can update your Tripwire database in two ways. The first method is interactive, where
Tripwire prompts the user whether each changed entry should be updated to reflect the current
state of the file, while the second method is a command-line driven mode where specific
files/entries are specified at run-time.

Interim Update 5-17 611-TD-572-001

5.6.2.1 Updating Tripwire Database in Interactive mode

Running Tripwire in Interactive mode is similar to the Integrity Checking mode. However, when
a file or directory is encountered that has been added, deleted, or changed from what was
recorded in the database, Tripwire asks the user whether the database entry should be updated.

For example, if Tripwire is run in Interactive mode and a file's timestamp changed, Tripwire will
print out what it expected the file to look like, what it actually found, and then prompt the user
whether the file should be updated. For example:

/etc/hosts.equiv

st_mtime: Wed May 5 15:30:37 1993 Wed May 5 15:24:09 1993

st_ctime: Wed May 5 15:30:37 1993 Wed May 5 15:24:09 1993

---> File: /etc/hosts equiv

---> Update entry? [YN(y)n?] y

You could answer yes or no, where a capital 'Y' or 'N' tells Tripwire use your answer for the rest
of the files. (The 'h' and '?' choices give you help and descriptions of the various inode fields.)

While this mode may be the most convenient way of keeping your database up-to-date, it
requires that the user be "at the keyboard." A more conventional command-line driven interface
exists, and is described next.

5.6.2.2 Updating Tripwire Database in Database Update Mode

Tripwire supports incremental updates of its database on a per-file/directory or tw.config entry
basis. Tripwire stores information in the database so it can associate any file in the database with
the tw.config entry that generated it when the database was created.

Therefore, if a single file has changed, you can:

tripwire -update /etc/newly.installed.file

Or, if an entire set of files that made up an entry in the tw.config file changed, you can:

tripwire -update /usr/local/bin/Local_Package_Dir

In either case, Tripwire regenerates the database entries for every specified file. A backup of the
old database is created in the ./databases directory.

Tripwire can handle arbitrary numbers of arguments in Database Update mode.

The script twdb_check.pl script is an interim mechanism to ensure database consistency.
Namely, when new entries are added to the tw.config file, database entries may no longer be
associated with the proper entry number. The twdb_check.pl script analyzes the database, and
remaps each database entry with its proper tw.config entry.

Interim Update 5-18 611-TD-572-001

5.6.3 Configuring the tw.config file

Edit your tw.config file in the ./configs directory, or whatever filename you defined for the
Tripwire configuration file, and add all the directories that contain files that you want monitored.
The format of the configuration file is described in its header and in the "man" page. Pay
especially close attention to the select-flags and omit-lists, which can significantly reduce the
amount of uninteresting output generated by Tripwire. For example, you will probably want to
omit files like mount tables that are constantly changed by the operating system.

Run Tripwire with tripwire -initialize. This will create a file called tw.db_[hostname] in the
directory you specified to hold your databases (where [hostname] will be replaced with your
machine hostname).

Tripwire will detect changes made to files from this point on. You *must* be certain that the
system on which you generate the initial database is clean; however, Tripwire cannot detect
unauthorized modifications that have already been made. One way to do this would be to take
the machine to single-user mode, reinstall all system binaries, and run Tripwire in initialization
mode before returning to multi-user operation.

This database must be moved someplace where it cannot be modified. Because data from
Tripwire is only as trustworthy as its database, choose this with care. It is recommended to place
all the system databases on a read-only disk (you need to be able to change the disk to writeable
during initialization and updates, however), or exporting it via read-only NFS from a "secure
server." (This pathname is hardcoded into Tripwire. Any time you change the pathname to the
database repository, you must recompile Tripwire. This prevents a malicious intruder from
spoofing Tripwire into giving a false "okay" message.)

We also recommend that you make a hardcopy printout of the database contents right away. In
the event that you become suspicious of the integrity of the database, you will be able to
manually compare information against this hardcopy.

Once you have your database set up, you can run Tripwire in Integrity Checking mode by typing
tripwire on the command line from the directory in which Tripwire has been installed.

5.7 Reporting Security Breaches

Reporting of Security breaches shall be in accordance with EOSDIS Security Policy and Guides
(EOSDIS-IVV-0821.2-9/30/97). Appendix B and C.

5.8 Initiating Recovery from Security Breaches

Recovery from Security breaches shall be in accordance with EOSDIS Security Policy and
Guides (EOSDIS-IVV-0821.2-9/30/97). Appendix B and C.

Interim Update 5-19 611-TD-572-001

This page intentionally left blank.

Interim Update 5-20 611-TD-572-001

Interim Update 5-21 611-TD-572-001

This page intentionally left blank.

Interim Update 5-22 611-TD-572-001

